Applicability of Load Balancing Strategies to Data-Parallel Embedded Runge-Kutta Integrators

نویسندگان

  • Matthias Korch
  • Thomas Rauber
چکیده

Embedded Runge-Kutta methods are among the most popular methods for the solution of non-stiff initial value problems of ordinary differential equations (ODEs). We investigate the use of load balancing strategies in a dataparallel implementation of embedded Runge-Kutta integrators. Since the parallelism contained in the function evaluation of the ODE system is typically very fine-grained, our aim is to find out whether the employment of load balancing strategies can be profitable in spite of the additional overhead they involve.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Racoon: A parallel mesh-adaptive framework for hyperbolic conservation laws

We report on the development of a computational framework for the parallel, mesh-adaptive solution of systems of hyperbolic conservation laws like the timedependent Euler equations in compressible gas dynamics or Magneto-Hydrodynamics (MHD) and similar models in plasma physics. Local mesh refinement is realized by the recursive bisection of grid blocks along each spatial dimension, implemented ...

متن کامل

Embedded pairs of Fractional Step Runge-Kutta methods and improved Domain Decomposition techniques for parabolic problems

In this paper we design and apply new embedded pairs of Fractional Step Runge-Kutta methods to the efficient resolution of multidimensional parabolic problems. These time integrators are combined with a suitable splitting of the elliptic operator subordinated to a decomposition of the spatial domain and a standard spatial discretization. With this technique we obtain parallel algorithms which h...

متن کامل

Effiziente Implementierung eingebetteter Runge-Kutta-Verfahren durch Ausnutzung der Speicherzugriffslokalität

Embedded Runge-Kutta methods are among themost popular numerical solutionmethods for non-stiff initial value problems of ordinary differential equations. While possessing a simple computational structure, they provide desirable numerical properties and can adapt the step size efficiently. Therefore, embedded Runge-Kutta methods can often compute the solution function faster than other solution ...

متن کامل

Parallel Execution of Embedded Runge-Kutta Methods

In this paper, we consider the parallel solution of nonstii ordinary diierential equations with two diierent classes of Runge-Kutta (RK) methods providing embedded solutions: classical embedded RK methods and iterated RK methods which were constructed especially for parallel execution. For embedded Runge-Kutta methods, mainly the potential system parallelism is exploited. Iterated RK methods pr...

متن کامل

Parareal Algorithm Implementation and Simulation in Julia

We present a full implementation of the parareal algorithm—an integration technique to solve di erential equations in parallel— in the Julia programming language for a fully general, rst-order, initial-value problem. Our implementation accepts both coarse and ne integrators as functional arguments. We use Euler’s method and another Runge-Kutta integration technique as the integrators in our exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006